Híbridos promisorios de girasol para las condiciones de Venezuela

Enio Soto¹ F. Cecconi² G. Vannozi³ Hilda Fernández¹ Nobis Moreno⁴

Investigadores. INIA. ¹Centro Nacional de Investigaciones Agropecuarias. Maracay, estado Aragua. Venezuela; ²Universidad de Pisa, Departamento de Biología de Plantas Agrarias, Pisa, Italia; ³Universidad de Udine, Departamento de Genética, Udine, Italia; ⁴Técnico Asociado a la Investigación. Instituto Nacional de Investigaciones Agrícolas. Estación Experimental Sabaneta. Barinas, estado Barinas. Venezuela.

I abastecimiento de las materias primas oleaginosas se basa mayormente en el cultivo de la palma africana, cultivo que junto con el coco tiene muy buena adaptabilidad; sin embargo, estos cultivos presentan algunas limitaciones en el procesamiento para la obtención de aceite de alta especificidad en ácidos grasos insaturados (Fernández y Soto 1998).

En Venezuela, la importación de aceite de girasol por diversas industrias se encuentra alrededor de 170.000 toneladas, cantidad que representa no menos de 100.000 hectáreas del cultivo para cubrir esa demanda, sin contar con el consecuente beneficio que el producto de estas siembras significaría para centenares de productores. No obstante, por diversas razones el cultivo no ha contado con el apoyo gubernamental ni de la industria, ya que se alega falta de competitividad ante los mercados internacionales.

El papel de la semilla en el éxito del girasol

Para entender mejor el problema de la productividad del girasol es necesario enfocarlo de una manera integral (Soto 1999). En este sentido, uno de los factores que debe considerarse es el componente genético o el tipo de semilla. En Venezuela, las siembras siempre se basan en el uso de híbridos importados, los cuales son producidos por compañías transnacionales, en otras latitudes y para otras condiciones. Por otra parte, las enfermedades en los países de origen son diferentes, los suelos son más profundos y fértiles, y el clima tropical tiene sus particularidades respecto a la temperatura y a la radiación solar. Por estas razones, si se trabajara más en incorporar líneas tropicales en los híbridos que se siembran en Venezuela, se obtendría una mayor estabilidad en los rendimientos.

Los resultados que se presentan provienen de las evaluaciones preliminares de un estudio, que forma parte de una alianza estratégica con programas de mejoramiento de universidades italianas, compañías privadas y el banco de germoplasma del INIA-Ceniap, la cual tiene como finalidad realizar estudios sobre el comportamiento de progenies (descendencias) base, para lograr la tropicalización de líneas que puedan manifestar un mejor comportamiento a las condiciones de siembra de Venezuela.

Localidades e híbridos

Las localidades de siembra fueron el Campo Experimental de Sabaneta, INIA Barinas, el Campo Experimental del Ceniap – INIA, en Maracay y el Campo Experimental Experta - UCV, en Maracay. En el Ceniap fueron sembrados 29 híbridos; en Experta 21 híbridos, de los cuales 11 repitieron de la siembra del Ceniap; en Barinas 21 híbridos, 13 de ellos se habían sembrado en Maracay. La mayoría de las siembras se realizaron en secano; es decir, sólo se utilizó el agua de lluvia.

Cultivares sobresalientes en Barinas

Los resultados de las evaluaciones realizadas en la localidad de Sabaneta, estado Barinas, quizás sean los resultados más importantes debido a su cercanía con las grandes zonas productoras de Venezuela (Cuadro 1).

- El ciclo del cultivo se cumplió entre 111 y 119 días, lo que indica que entre el grupo no había cultivares realmente precoces y la mayoría de los cultivares alcanzó la floración alrededor de los 58 días, en promedio.
- El único cultivar sobresaliente con respecto al porcentaje de aceite fue el cruce I321 x STT346,

aunque los híbridos comerciales DK3881 y C101 se ubicaron en las primeras posiciones para esta característica. Con 50% de aceite sobresalen los híbridos experimentales: 3174 x 3150, 3180 x 3150, y 7ro x 686r.

- Cinco cultivares presentaron ángulos del capítulo menos deseables, 90 y 180°, mientras que el resto presentó ángulos de 135 grados.
- Las enfermedades de mayor incidencia fueron Sclerotium sp. y Macrophomina sp. Estas enfermedades se consideran entre las más importantes para el trópico (Aponte 1989) y representan un problema potencial, debido a que los híbridos importados no han sido mejorados para estas características.
- La producción por parcela fue satisfactoria, con un promedio de 1.743,48 kilogramos, lo que representa un rendimiento de 1.816 kilogramos por

hectárea. Los cruces más sobresalientes para rendimiento fueron I321 x STT346, 3178 x 3124, M-734, 3178 x 3150 y 3174 x 3150.

Cultivares sobresalientes en Maracay

Los valores obtenidos en el Campo Experimental del Ceniap y en la Estación Experimental Experta, en la localidad Maracay, la cual presenta condiciones de suelo arenoso y, por consiguiente con una situación de déficit de humedad, se muestran en los cuadros 2 y 3.

- Los híbridos HA89 x 964-1R, Ha372 x 686 R y 3174 x 3145 mostraron alta susceptibilidad al hongo *Sclerotium* sp. La duración del ciclo es similar, en promedio, pero el grupo de cruces italianos tuvieron valores de 128 días a cosecha, lo cual resulta indeseable para el sistema de producción en Barinas (Soto y Fernández 1997).

Cuadro 1. Ensayo de híbridos promisorios de girasol. Campo Experimental Sabaneta, estado Barinas.

Día		a flor	Días	Diám.	Diám.	Ángulo	Peso	Rendi-	Acame a	Incidencia de enfermedades			
Tratamiento	Inicio	50%	Cose-	tallo	capítulo	capítulo	100 sem.	miento	cosecha	por	entaje e	valuación 4	0-100 días
			cha	(mm)	(cm)		(g)	kg/ha	N° plantas	Scler.	Oidium	Macroph.	Aceite (%)
DK-3881	53	57	114	19,40	18,40	135	5,60	2.020,00		2	100	6	53,6
3174 x 3150	55	58	115	20,80	15,60	135	5,40	2.239,00	2	6		5	50,1
89 x 10-64	53	57	116	27,00	23,00	135	5,10	1.822,90			100	2	49
3178 x 3150	54	57	112	28,00	20,00	135	5,00	2.239,00		2		3	46,4
3180 x 3165	55	60	115	29,60	21,80	180	4,30	1.484,00		11	10	2	49,6
3178 x 3145	55	59	115	25,80	19,60	135	5,20	2.057,00		18			46,4
3180 x 3150	62	64	116	25,60	18,00	135	5,50	1.927,00		5			50,4
M-734	54	56	114	23,40	15,80	180	6,20	2.265,60		6		1	46,1
3178 x 3124	57	62	113	22,60	17,40	135	5,00	2.229,00	4	5		1	42,7
372 x R59	52	56	113	22,40	19,20	180	7,00	1.701,00		4	30	2	45,9
13221 x T346	56	59	115	28,40	19,60	135	5,20	2.229,20		2	30	1	55,7
341 x 954R	55	58	112	27,40	26,60	135	4,60	1.500,20		10	70	3	48,1
3174 x 3165	54	59	111	25,4	18,20	135	4,50	1.406,30					46,8
7RO x 686R	54	58	116	27,60	20,00	135	6,40	1.198,00	1	4	10	5	50,1
M738	52	58	117	22,20	14,60	180	6,00	1.562,00					46,1
3174 x 3145	54	58	114	22,40	16,20	180	5,10	1.708,00		24		3	46,8
3178 x 3165	53	55	114	27,20	20,60	135	5,00	2.010,40	3		20	4	45,6
89 x 298R	52	56	119	22,40	17,00	90	5,40	1.432,30	1	9	50	12	46,7
3174 x 3124	53	61	117	22,80	15,80	135	5,10	1.770,00	7	6		4	46,8
372 x R59	52	55	119	26,60	23,60	135	5,90	1.505,00		1	5	5	45,3
C101	52	56	119	24,60	16,80	180	5,30	1.823,00					52,9
Media													
aritmética	54,14	58,05	115,05	24,84	18,94	135:66,6%	5,37			7,19		3,69	48,1
Desv.													
estándar	2,8	2,3		8,4	4,8	130:21,5% 90:4,7%	1,3						3,1

Cuadro 2. Evaluación de híbridos de girasol. Estación Experimental Experta (UCV). Maracay, estado Aragua. Suelos arenosos.

Nombre	Días a flor			Capítulo		Alt.		Cosecha		Suscep.	Estado		Rendim.
	50%	Cos.	Diám.	Ángulo		Plant. (cm)	N° cap	. SS/GR	G/cap.	% Scler	desarrollo días	R	(kg/ha)
AGROBEL 910	57	105	14,6	135	2	139	37	1.474,4	39,8	1,04	55/76	4-5/7-8	1.843
AGROBEL 920	54	105	19,8	180	1-2	150	45	2.404	53,4	0,93	55/76	3/7	3.005
AGROBEL 960	45	107	16,4	180	2	137	40	18.523,3	46,3	0	55/76	5-5/8	2.315,4
AC-2221 x L-17	57	112	21	180	1	162	16	921,6	57,6	0	55/76	3/5.9	2.304
HA-89 x 10-78	60	117	22,6	90-135	2	150	14	518 [°]	37	0	55/76	1-3/6	1.295
10-78 x HA89	58	117	23,8	135	1	131	9	398,5	44,3	0	55/76	3-4/6	996,2
HA89 x FERTIL	65	121	20,2	180	2	161	23	444,3	19,3	0	55/76	1-3/6-5.9	1.110,7
HA341 x 954R	69	111	20,2	180	1-2	176	39	1.570,4	40,3	0	55/76	2/6	1.963
HA342 x R-59	60	106	19 [°]	135	2	128	38	2.106,8	55,4	1,45	55/76	3-5.5/7-8	2.632,5
958-R x 341 A	72	128	17,2	90-180	2	137	12	268,3	22,3	,	55/76	1/5.9	670,7
341 A x 958-R	72	128	17,2	90-180	2	137	12	268,3	22,3	Presente	55/76	1/5.9	670,7
3174 x 3145	66	128	25	180	1-2	139	11	532,5	48,4	31,8	55/76	3/6	1.331,25
3174 x 3150	71	128	21,4	180	1-2	156	9	363,3	40,4	8,3	55/76	1/5.5-5.9	908,25
3178 x 3145	71	128	19,6	180	1-2	134	18	898	49,9	4	55/76	2/5.9-6	2.245
3178 x 3165	70	128	22	180	1-4	171	23	1.430,5	62,2	3,3	55/76	2/7-6	1.788,1
3178 x 3107	54	108	19,6	135	1	137	33	2.224,4	67,4	4,6	55/76	3-5.1/7	2.780,5
3180 x 3134	54	106	18	135-180	1	127	20	949,4	47,5	3,8	55/76	4/7	2.373,5
L-17 x 101-B	65		24,3	180	2	166				0	55/76	1/5.9	1.990
HA-372 x 686-R	54	105	23	180-135	1	115	8	641,7	80,2	18,2	55/76	1604,2	2.050
341 A x 978-4	62	117	19,6	135	1-2	161	9	472	52,4	0	55/76	2/6	1.180
HA-89 x 964-1 R	57	107	21,6	180-225	1-2	151	19	1.255,2	66,1	45,8	55/76	3/6	3.138
Media aritmética	61,8	3 115,6	20,2	135:28,5	;	145,9	135	28,5					1.790
Desv. estándar	7,6	9,5	2,7	180:52,3		16,1	180	52,3					775
Desv. estandar	7,6	9,5	2,7	180:52,3 90:14,2		10,1	180 90	52,3 14,2					/

Cuadro 3. Grupo de híbridos experimentales de girasol sembrados en el Campo Experimental del Ceniap - INIA. Maracay, estado Aragua.

Nombre	Días a	flor	Ca	pítulo	Alt. planta	Cos	Rendim.	
	Inicio	50%	Diám.	Ángulo	(cm)	Días	(g)	(kg/ha)
3174 x 3165	62	65	25,4	180	191			
3178 x 3165	59	63	21,4	180	146	105	863,10	1.798,13
3178 x 3228	61	66	23,4	225	174	107	410,66	855,54
3180 x 3134	57	58	20,7	180	167	100	638,47	1.330,15
3180 x 3165	58	61	20,2	225	172	104	897,52	1.869,83
HA89 x 10-64	58	62	17,4	180	183	110	703,98	1.466,63
HA89 x 10-78	58	63	19,4	180-225	202	114	714,68	1.488,92
HA-372 x R-59	57	59	16,9	180	201	100	1.243,92	2.591,50
HA-372 x R-59	54	58	16,2	180	191	100	1.138,90	2.372,71
H89 x L17	57	61	19,4	180	228	107	909,15	1.894,06
HA-341 x 954-R	60	67	21,8	135	197	104	428,39	1.784,96
HA-372 x ROLE	59	61	18,5	180	196	100	587,85	2.449,38
HAS-55 x R-13	60	65	20	180	190	114	799,22	3.330,08
HAS-55 x R-29	56	59	22	180	178	104	595,92	2.483,00
7RO x 978-4R	56	60	16,3	180	184	100	554,33	2.309,71
7RO x 982-R	57	60	20,8	180	186	104	618,94	2.578,92
I 321 x TUB 346-R	60	64	25	180	224	114	813,74	3.390,58
Media aritmética	57,7	61,7	19,9	135:4,7%	187,1	105,5		1.807,8
Desv. estándar	2,4	2,8	2,6	180:76,1%	18,3	5,0		882,0
				225:19,2%				

- El ciclo del cultivo fue diez días más corto, con una desviación de cinco días v la mavoría de los cultivares presentaron algún tipo de rayado en la semilla; sin embargo, el híbrido I321 x T346, uno de los más promisorios, no lo presentó. Otro híbrido que presentó un alto rendimiento fue el HS55 x R13, junto con 7RO x 982-R y HA372 x R59, combinación esta última propuesta por Venezuela combinando línea pública americana con restaurador europeo.
- La variabilidad de productividad bajo las condiciones de Maracay fue mayor, con un promedio similar y valores menores de los diámetros del capítulo. Se observaron rendimientos máximos mayores de 2.600 kilogramos por hectárea, entre los que destacan el híbrido HA89 x 964-1 con 3.138 kilogramos por hectárea, seguido de Agrobel 920, 3178 X 3107 y HA342 X R59. No hubo casi híbridos repetidos de los probados en Barinas y el cruce 3174 x 3150 no mantuvo un buen comportamiento en estas condiciones.

Observaciones finales

 Las líneas argentinas de semilla negra: 3178 y 3174, se presentan como líneas estériles promisorias para producir híbridos en las condiciones de Barinas.

- La combinación de la línea española comercial con la selección tropical T346 se comportó como la más estable y de mayor producción en grano y aceite.
- Las enfermedades de mayor efecto negativo fueron Macrophomina sp. y Sclerotium sp.
- En estas pruebas la característica presente e indeseable fue el acame.

Bibliografía

Aponte, A. 1989. Enfermedades del girasol detectadas en Venezuela. FONAIAP Divulga 7 (32): 25-27.

Aponte, O. 1990. Situación entomológica del girasol en el estado portuguesa. En: Taller de análisis de la tecnología sobre el cultivo de girasol en el estado Barinas: Memorias. Fondo Nacional de Investigaciones Agropecuarias, Estación Experimental de Barinas. Barinas, Venezuela. p. 163-164.

Arnal, E.; Ramos, F. 1990. Insectos relacionados con el cultivo de girasol. FONAIAP Divulga, 8 (33): 31-35.

Fernández, H.; Soto, E. 1998. The present status and prospects for sunflower in Venezuela. Helia 21 (29): 137-144.

Soto, E.; Fernández, H. 1997. El girasol en Venezuela. FONAIAP Divulga 56 (3): 2-5.

Adquiera estas publicaciones en los puntos de ventas señalados en la última página

Sistemas Alimentarios de raíces y tubérculos Autor: Eduardo Ortega Cartava

El cultivo de la piña en Venezuela

Autores: Isabel Montilla de Bravo Silvestre Fernánsica Dylcia Alcala de Marcano Myriam Gallardo

Recursos fitogenéticos en Venezuela.

El cultivo de la yuca

Autores: José Torres Novis Moreno Nancy Contreras

